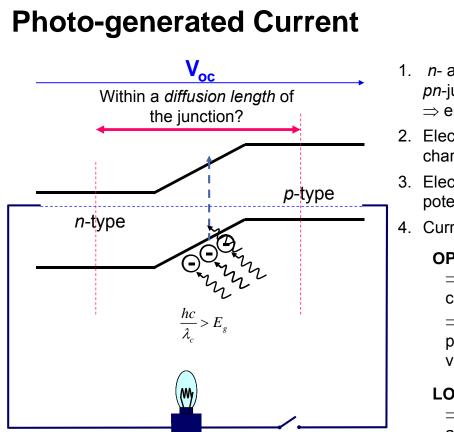


"Solar Energy" WS 2014/2015

Lecture 5: Part 1: Operation of Real Silicon Solar Cells Part 2: Design of Silicon Solar Cells


Prof. Dr. Bryce S. Richards

Institute of Microstructure Technology (IMT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen Light Technology Institute (LTI), Engesserstrasse 13, Building 30.34, 76131 Karlsruhe

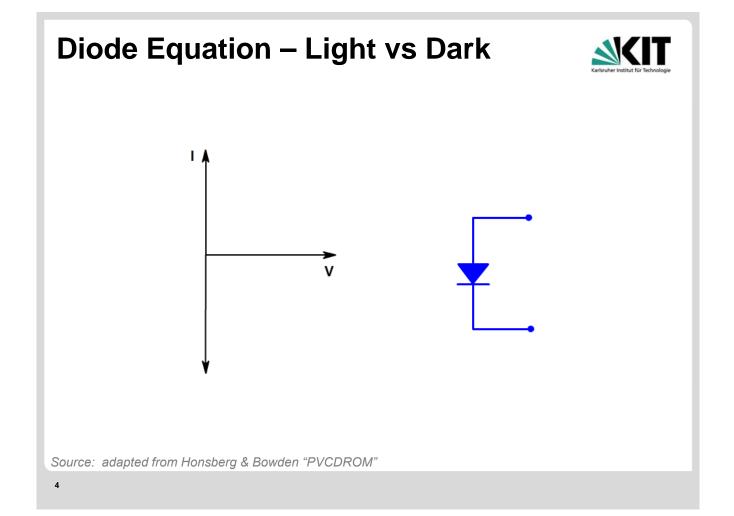
KIT Focus Optics & Photonics

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

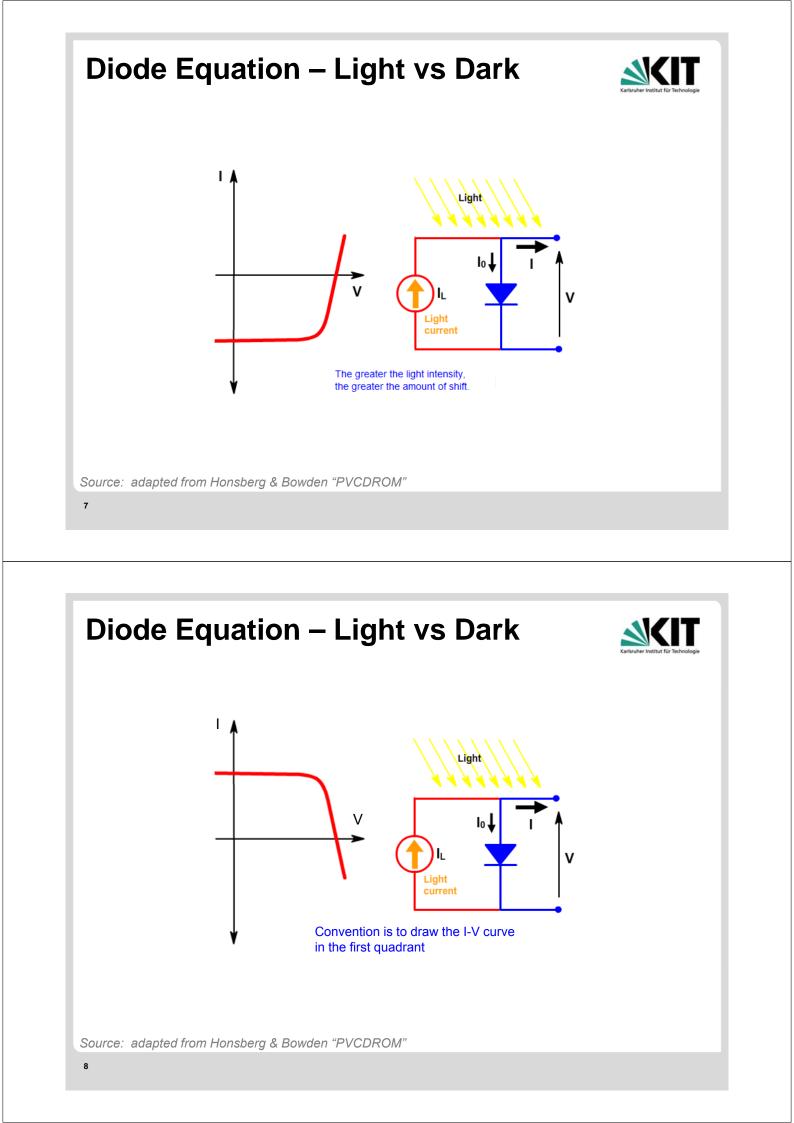
- *n* and *p*-type semi's form *pn*-junction ⇒ energy gradient ⇒ electric field
- 2. Electric field separates charge \Rightarrow current
- 3. Electric field gives rise to potential \Rightarrow voltage
- 4. Current at a voltage \Rightarrow power

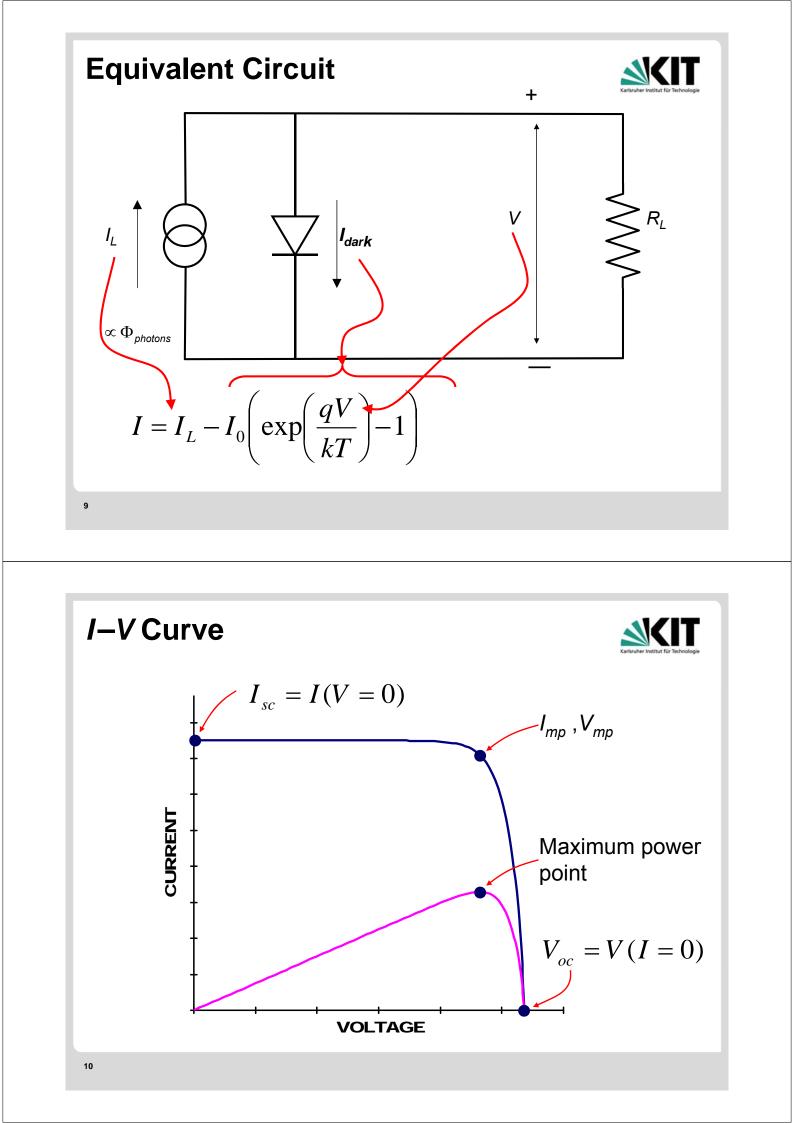
OPEN CIRCUIT:

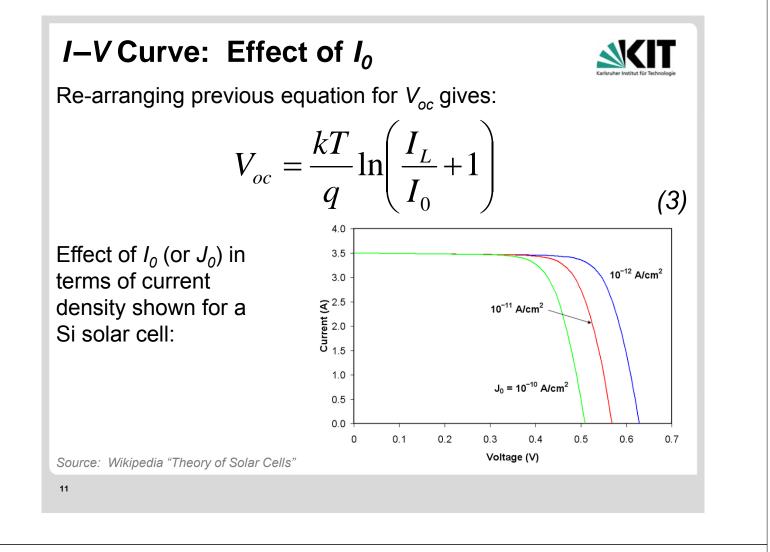
 \Rightarrow charge builds up on the contacts

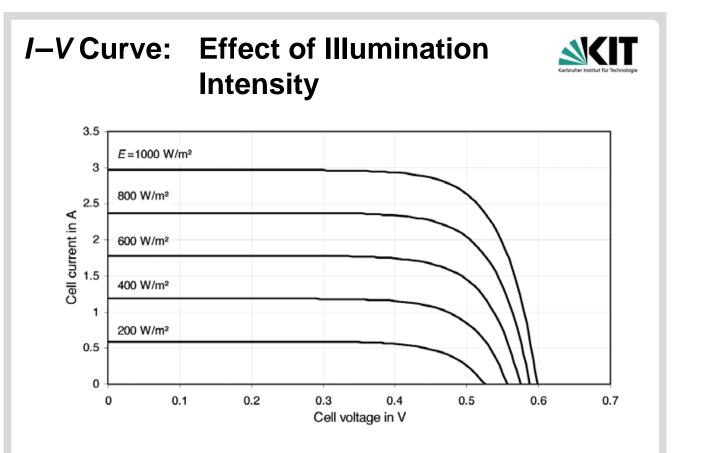

 \Rightarrow charge build-up produces a potential voltage (V_{oc})

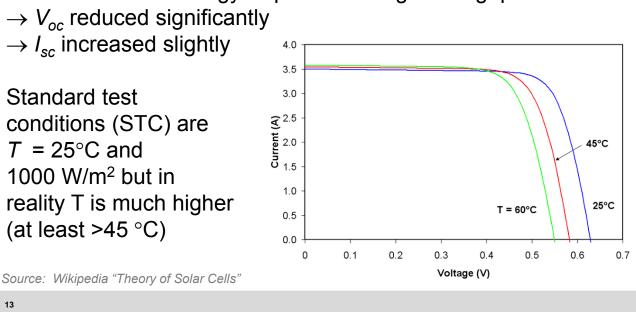
LOADED CIRCUIT


 \Rightarrow **photo current** will flow and voltage will drop


Diode Equation – Light vs Dark


$$\begin{aligned}
f = \int_{L} -\int_{0} \left(exp\left(\frac{qV}{kT} - 1 \right) \right)^{\text{thermal voltage:}}_{V_{th}} = kT/q \\ = 25.7 \text{ mV at } 25^{\circ}\text{C} \end{aligned}$$
Where I_{L} is the photocurrent I_{0} is the diode saturation (dark) current K is Boltzmann constant = 1.38×10^{-23} J/K G is the electronic charge = 1.6×10^{-19} C.
Tpical numbers: $I_{0} \cong 1nA - 1\muA$, $I_{L} \cong 3 - 4A$
Short Circuit: $V = 0$, $I = I_{L}$
 $= I_{sc}$ (under most conditions).
Open Circuit: $V = V_{oc}$, $I = 0$




Source: Quaschning (2005) "Understanding Renewable Energy Systems"

I–V Curve: Effect of Temperature

Increasing T reduces bandgap of semiconductor and increases the energy of e^- in material

Lower additional energy required to bridge bandgap

I-V Curve: Effect of Temperature

 V_{oc} decreases with *T* due to *T*-dependence of I_{0} . Remembering (lecture 4, slide 28) the equation for I_{0} from one side of a *p*-*n* junction is:

$$I_0 = qA \frac{Dn_i^2}{LN_D}$$
 where:

q is the electronic charge; *D* is the diffusivity of the minority carrier; *L* is the diffusion length of the minority carrier; N_D is the doping; and n_i is the intrinsic carrier concentration for silicon

Many of these parameters have *some T*-dependance, but greatest effect is due to $n_i \Rightarrow$ depends on the E_g (lower E_g having higher n_i) and on energy of carriers (so higher T gives higher n_i)

I–V Curve: Effect of Temperature

Equation for n_i is:

$$n_i^2 = 4\left(\frac{2\pi kT}{h^2}\right)^3 (m_e^* m_h^*)^{3/2} \exp\left(-\frac{E_{G0}}{kT}\right) = BT^3 \exp\left(-\frac{E_{G0}}{kT}\right)$$

where:

h = Planck' constant, 6.626 × 10⁻³⁴ J·s *k* = Boltzmann's constant, 1.3806 × 10⁻²³ J/K *m_e* and *m_h* = effective masses of electrons and holes, respectively *E_{G0}* = bandgap linearly extrapolated to absolute zero *B* = constant which is essentially independent of temperature

Substituting back into expression for I_0 (assuming that *T*-dependencies of other parameters can be neglected) gives;

$$I_0 = qA \frac{D}{LN_D} BT^3 \exp\left(-\frac{E_{G0}}{kT}\right) \approx B'T^{\gamma} \exp\left(-\frac{E_{G0}}{kT}\right)$$

where γ is used instead of 3 to incorporate possible T-dependencies of other materials. For Si solar cells near RT, I_0 approximately doubles for every 10 °C increase in temperature

15

I–V Curve: Effect of Temperature

Now substituting I_0 back into equation for V_{oc} (with $E_{G0} = qV_{G0}$)

$$V_{OC} = \frac{kT}{q} \ln\left(\frac{I_{SC}}{I_0}\right) = \frac{kT}{q} \left[\ln I_{SC} - \ln I_0\right] = \frac{kT}{q} \ln I_{SC} - \frac{kT}{q} \ln\left[B'T^{\gamma} \exp\left(-\frac{qV_{G0}}{kT}\right)\right]$$
$$= \frac{kT}{q} \left(\ln I_{SC} - \ln B' - \gamma \ln T + \frac{qV_{G0}}{kT}\right)$$

and assuming that dV_{oc}/dT does not depend on dI_{sc}/dT , then dV_{oc}/dT is

$$\frac{dV_{OC}}{dT} = \frac{V_{OC} - V_{GO}}{T} - \gamma \frac{k}{q}$$

 \Rightarrow demonstrates that *T* sensitivity of solar cell depends on V_{oc}

For Si, E_{G0} = 1.2, and using γ = 3 gives a <u>reduction in V_{oc} of ~2.2 mV/°C</u>

$$\frac{dV_{OC}}{dT} = -\frac{V_{GO} - V_{OC} + \gamma \frac{kT}{q}}{T} \approx -2.2mV \text{ per }^{o}C \text{ for Si}$$

I–V Curve: Effect of Temperature

 I_{sc} increases slightly with *T* since the E_G decreases and more photons can create $e^{-}-h^+$ pairs. But this is a small effect and the *T* dependence of I_{sc} from a silicon solar cell is

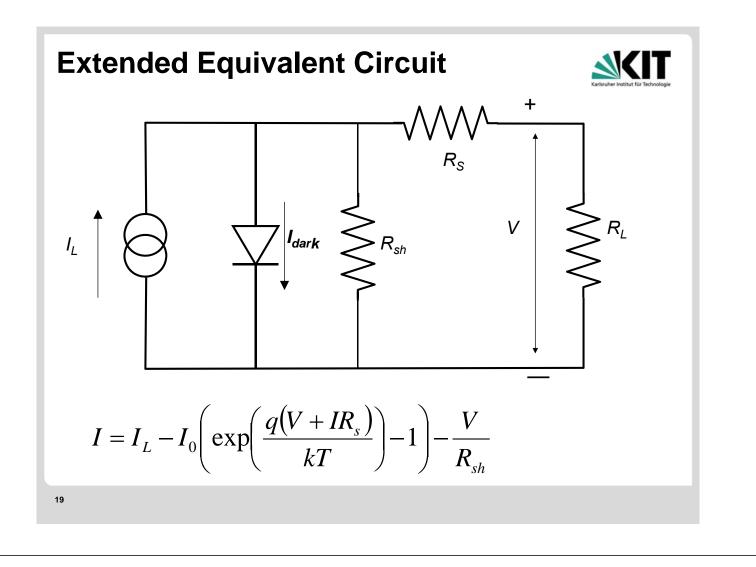
 $rac{1}{I_{SC}}rac{dI_{SC}}{dT}pprox$ 0.0006 per °C for Si

The T dependency of FF for silicon is approximated by

 $\frac{1}{FF}\frac{dFF}{dT} \approx \left(\frac{1}{V_{OC}}\frac{dV_{OC}}{dT} - \frac{1}{T}\right) \approx -0.0015 \text{ per }^oC \text{ for Si}$

The effect of T on the maximum power output P_m is

 $P_{Mvar} = \frac{1}{P_M} \frac{dP_M}{dT} = \frac{1}{V_{OC}} \frac{dV_{OC}}{dT} + \frac{1}{FF} \frac{dFF}{dT} + \frac{1}{I_{SC}} \frac{dI_{SC}}{dT}$ $\frac{1}{P_M} \frac{dP_M}{dT} \approx -(0.004 \text{ to } 0.005) \text{per}^{-o} C \text{ for Si}$

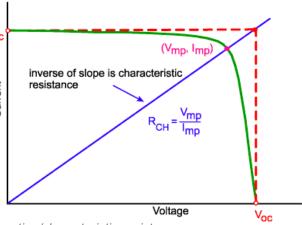

Extended Equivalent Circuit

- Simple equivalent circuit sufficient for most applications (to within few % of measured cells)
- Extended model describes behaviour more exactly
- Charge carriers experience V drop going through the semiconductor junction to external contacts \rightarrow expressed via a series resistance R_s

($R_{\rm S}$ also important when considering interconnection of solar cells to form PV modules)

• An additional parallel resistance R_S (or shunt, R_{sh}) describes the leakage currents (e.g. at cell edges)

I–V Curve: Characteristic Resistance



<u>Characteristic resistance</u> R_{CH} of solar cell = output resistance of solar cell at maximum power point.

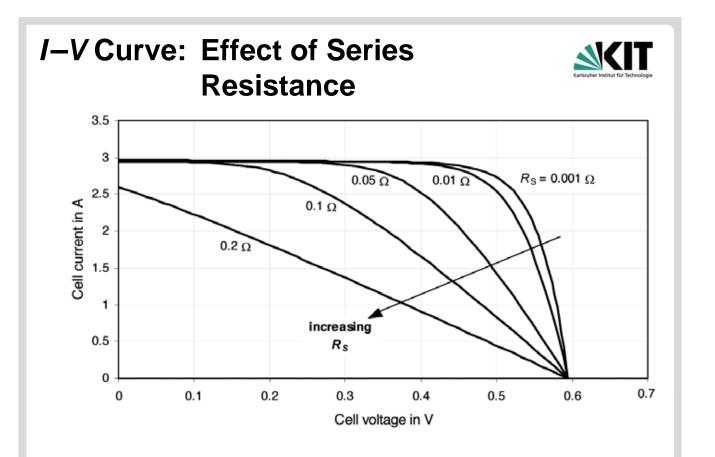
If the resistance of the load R_L is equal to characteristic resistance \Rightarrow maximum power is transferred to the load (solar cell operates at MPP)

$$R_{CH} = \frac{V_{mp}}{I_{mp}} \approx \frac{V_{oc}}{I_{sc}}$$

Useful parameter in solar cell analysis, particularly when examining the impact of parasitic loss mechanisms

Source: http://www.pveducation.org/pvcdrom/solar-cell-operation/charecteristic-resistance

I–V Curve: Effect of Series Resistance



Series resistance in a solar cell has three causes:

- 1. movement of current through emitter and base of solar cell;
- 2. contact resistance between metal contact and silicon; and
- 3. resistance of front and rear metal contacts.

Main impact of series resistance is to reduce the FF, although excessively high values may also reduce I_{sc}

Series resistance does not affect the solar cell at V_{oc} since the overall current flow through the solar cell (and thus through R_s) is zero. But near $V_{oc} \Rightarrow$ I-V curve is strongly effected by R_s

Source: Quaschning (2005) "Understanding Renewable Energy Systems"

I–V Curve: Effect of Series Resistance

Simple method to estimate R_s of solar cell \Rightarrow find slope of I-V curve at V_{oc}

Effect on FF: for moderate values of $R_s \Rightarrow$ revised MPP approximated as power in the absence of R_s minus the power lost in R_s :

$$P_{MP}' \approx V_{MP} I_{MP} - I_{MP}^2 R_S = V_{MP} I_{MP} \left(1 - \frac{I_{MP}}{V_{MP}} R_S \right) = P_{MP} \left(1 - \frac{I_{SC}}{V_{OC}} R_S \right)$$
$$P_{MP}' = P_{MP} \left(1 - \frac{R_S}{R_{CH}} \right)$$

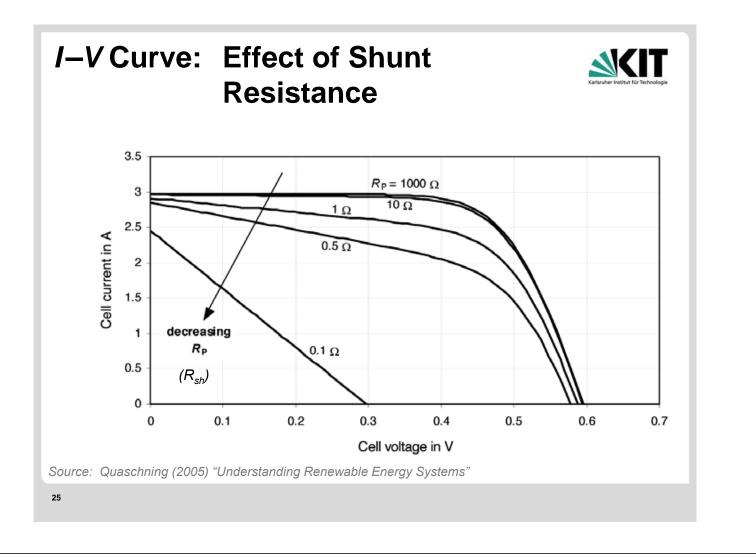
 $P'_{MP} = P_{MP}(1 - r_S)$ defining normalised shunt resistance $r_S = \frac{R_S}{R_{CH}}$ and if we assume that V_{oc} and I_{sc} are not affected by R_S then:

$$V_{OC}'I_{SC}'FF' = V_{OC}I_{SC}FF(1-r_S)$$

 $FF' = FF(1 - r_S)$

Typical values for area-normalized R_s range from 0.5 Ω cm² (lab cells) up to 1.3 Ω cm² (commercial solar cells)

23


I–V Curve: Effect of Shunt Resistance

Significant power losses caused due to $R_{SH} \Rightarrow$ typically due to manufacturing defects, rather than poor solar cell design

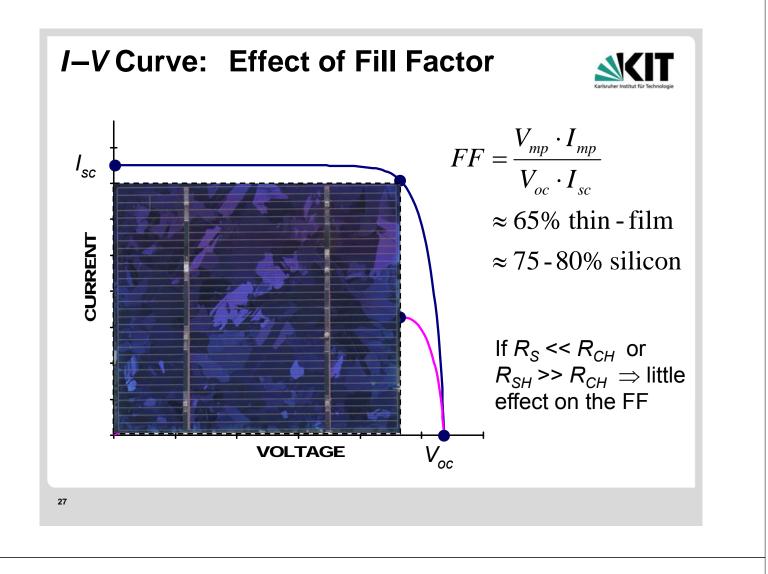
Low R_{SH} causes power loss by providing alternate current path for light-generated current \Rightarrow reduces amount of current flowing through *pn*-junction \Rightarrow reduces the voltage from the solar cell.

Effect of R_{SH} is particularly severe at low light levels, since there will be less light-generated current. In addition, at lower V (where the effective resistance R_{CH} of solar cell is high) \Rightarrow impact of R_{SH} is large

I–V Curve: Effect of Shunt Resistance

Simple method to estimate R_{SH} of solar cell \Rightarrow find slope of I-V curve near I_{sc}

Maximum power approximated as power in the absence of R_{SH} minus the power lost in R_{SH}


$$\begin{split} P_{MP}' &\approx V_{MP} I_{MP} - \frac{V_{MP}^2}{R_{Sh}} = V_{MP} I_{MP} \left(1 - \frac{V_{MP}}{I_{MP}} \frac{1}{R_{SH}} \right) = P_{MP} \left(1 - \frac{V_{OC}}{I_{SC}} \frac{1}{R_{SH}} \right) \\ P_{MP}' &= P_{MP} \left(1 - \frac{R_{CH}}{R_S} \right) \\ \end{split}$$

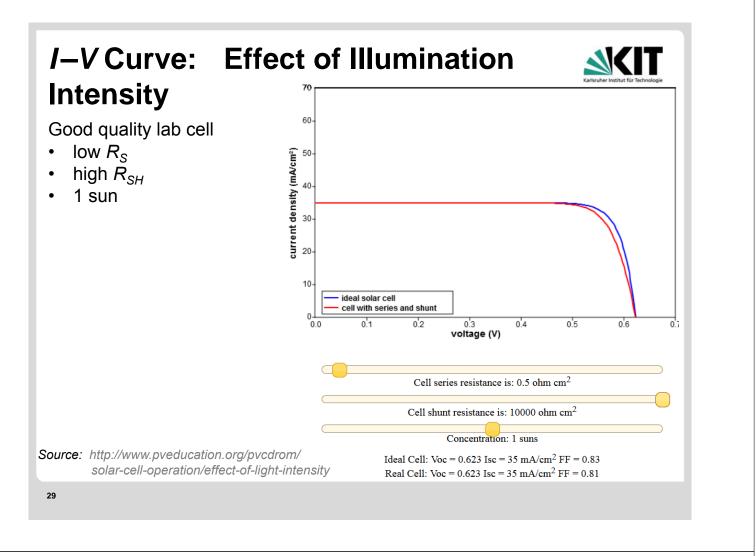
where we define the normalised shunt resistance as $r_{SH} = \frac{r_{SH}}{R_{CH}}$

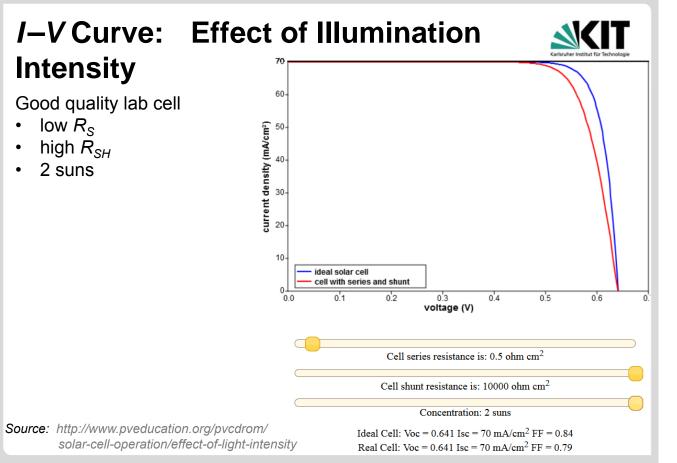
$$V_{OC}'I_{SC}'FF' = V_{OC}I_{SC}FF\left(1 - \frac{1}{r_{SH}}\right)$$

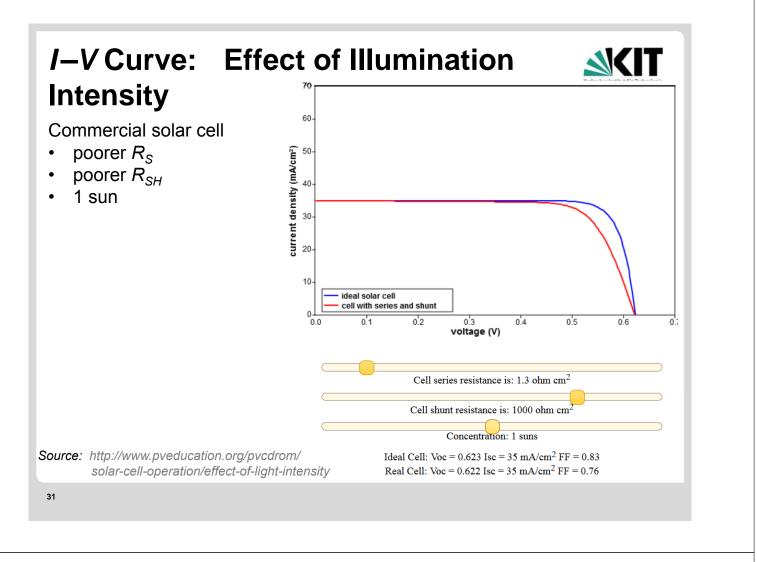
$$FF' = FF\left(1 - \frac{1}{r_{SH}}\right)$$

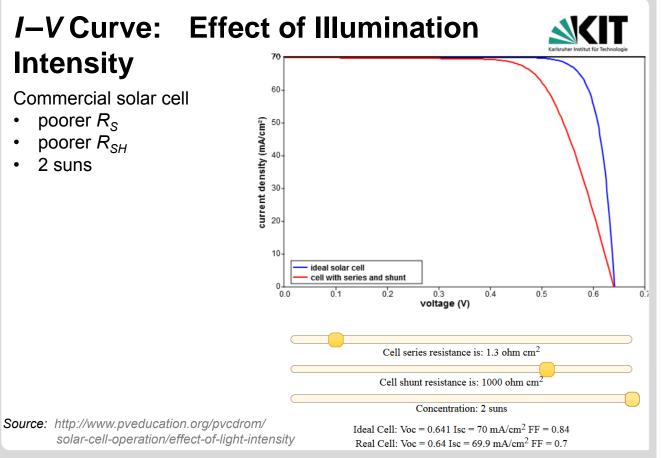
Typical values for area-normalized R_S range M Ω cm² (lab cells) down to ~1000 Ω cm² (commercial solar cells)

I–V Curve: Effect of Illumination Intensity (revisited)




Changing light intensity on a solar cell changes all parameters, including I_{sc} , V_{oc} , *FF*, η , and impact of R_s and R_{SH}


The light intensity on a solar cell \Rightarrow called the number of "suns", where 1 sun = standard illumination (AM1.5, 1 kW/m²)


E.g.

- a system with 10 kW/m² incident on the solar cell would be operating at 10 suns, or at 10X
- The common PV modules which are designed to operate under 1 sun conditions are called a "flat plate" modules, while those relying on concentrated sunlight are called "concentrators"

I–V Curve: Effect of Illumination Intensity

Solar cell I_{sc} depends linearly on light intensity \Rightarrow device operating under 10 suns would have 10x times the I_{sc} as same device under 1-sun operation

 \Rightarrow does <u>not</u> provide an efficiency increase, since the incident power also increases linearly with concentration.

Instead, the efficiency benefits arise from the logarithmic dependence of the V_{oc} on I_{sc}

$$V_{OC}' = \frac{nkT}{q} \ln\left(\frac{XI_{SC}}{I_0}\right) = \frac{nkT}{q} \left[\ln\left(\frac{I_{SC}}{I_0}\right) + \ln X\right] = V_{OC} + \frac{nkT}{q} \ln X$$

So, doubling of light intensity (X=2) causes a 18 mV rise in V_{oc} .

I–V Curve: Effect of Illumination Intensity

Concentrators have several potential advantages, including

- higher efficiency potential than a 1-sun solar cell
- possibility of lower cost

The cost of a concentrating PV system may be lower than a corresponding flat-plate PV system since only a small area of solar cells is needed

But efficiency benefits of concentration may be reduced by increased losses in R_s as the I_{sc} increases and also the increased *T* operation of solar cell. Power loss due to series resistance increases as the square of the concentration

I–V Curve: Effect of Illumination Intensity

Solar cells experience daily variations in light intensity \Rightarrow incident power from sun varying between 0 and 1 kW/m²

At low light levels, the effect of R_{SH} becomes increasingly important. As the light intensity decreases, the bias point and current through the solar cell also decreases, and the characterstic resistance of the solar cell begins to approach R_{SH} . When these two resistances are similar, the fraction of the total current flowing through the R_{SH} increases, thereby increasing the fractional power loss due to R_{SH} .

Consequently, under cloudy conditions, a solar cell with a high R_{SH} retains a greater fraction of its original power than a solar cell with a low R_{SH}

35

Diode Ideality Factor

Ideality factor of a diode $n \Rightarrow$ measure of how closely the diode follows the ideal diode equation

or

There are effects that result in our diode not following simple diode equation \Rightarrow ideality factor *n* is a way of describing this

Recombination mechanisms

Ideal diode equation assumes that all recombination occurs via band to band or recombination via traps in the bulk areas from the device (i.e. not in the junction). Via that assumption, the derivation gives the ideal diode equation below and the ideality factor, n, is equal to one

$$I = I_L - I_0 \left[\exp\left(\frac{qV}{nkT}\right) - 1 \right]$$

Diode Ideality Factor

However, recombination does occur in other ways / areas of the device \Rightarrow these recombinations produce ideality factors different from ideal

The values for *n* in the following table reflect the number of carriers the need to come together during the recombination process

Recombination Type	Ideality factor	Description
SRH, band to band (low level injection)	1	Recombination limited by minority carrier.
SRH, band to band (high level injection)	2	Recombination limited by both carrier types.
Auger	2/3	Two majority and one minority carriers required for recombination.
Depletion region (junction)	2	two carriers limit recombination.

37

Diode Ideality Factor

Most solar cells usually exhibit near-ideal behaviour under Standard Test Conditions (so $n \approx 1$)

Under certain operating conditions, however, device operation may be dominated by recombination in the space-charge (depletion) region \Rightarrow characterized by a significant increase in I_0 as well as an increase in ideality factor to n \approx 2.

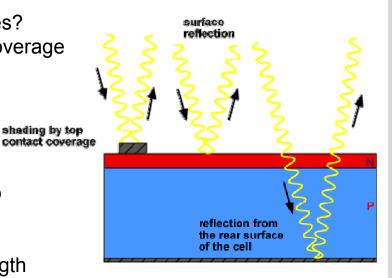
Higher *n* value increases the solar cell output voltage but the higher I_0 value decreases it. Typically, I_0 is the more significant factor \Rightarrow result is a reduction in voltage

"Solar Energy" WS 2014/2015

Lecture 5: Part 2: Design of Silicon Solar Cells

Prof. Dr. Bryce S. Richards

Institute of Microstructure Technology (IMT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen Light Technology Institute (LTI), Engesserstrasse 13, Building 30.34, 76131 Karlsruhe



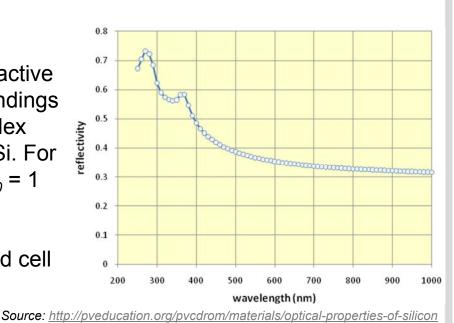
Optical Losses

Optical losses chiefly effect the power from a solar cell by lowering I_{sc} , e.g. light that had enough energy to generate an e^--h^+ pair but does not due to reflection or not being absorbed in solar cell

How to reduce optical losses?

- Minimise front contact coverage (trade-off with R_s)
- Anti-reflection coatings (ARC) on front surface
- Reflection reduced via surface texturing
- Make solar cell thicker to increase absorption (but be mindful of *L*!)
- Increase optical path length in solar cell via light trapping

Source: <u>http://www.pveducation.org/pvcdrom/</u> design/optical-losses

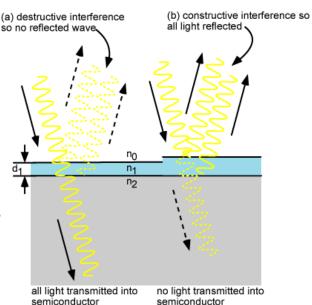


Reflectivity *R* between two materials of different refractive index:

$$R=\left(rac{n_0-n_{Si}}{n_0+n_{Si}}
ight)^2$$

where n_0 is the refractive index of the surroundings and n_{Si} is the complex refractive index of Si. For a solar cell in air, $n_0 = 1$ (shown in graph):

For an encapsulated cell $n_0 = 1.5$



Optical Losses

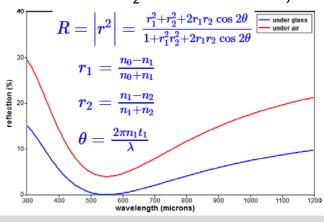
Anti-reflection coatings on solar cells \Rightarrow similar to ARC's used on other optical equipment, e.g. camera lenses.

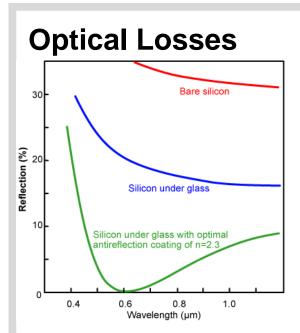
ARC's consist of thin layer of dielectric material, with specially chosen thickness so that interference effects in coating cause the wave reflected from ARC top surface to be out of phase with the wave reflected from the semiconductor surfaces \Rightarrow out-of-phase reflected waves interfere destructively with one another, resulting in zero net reflected energy

Source: http://pveducation.org/pvcdrom/materials/optical-properties-of-silicon

ARC thickness chosen so that the λ in the dielectric material is $\frac{1}{4}$ of the λ of the incoming wave. For a $\frac{1}{4} \lambda$ ARC made of a dielectric material with refractive index n_1 and light of incident wavelength λ_0 , the thickness d_1 which results in the minimum reflection is calculated by:

$$d_1 = \frac{\lambda_0}{4n_1}$$


Reflection is further minimized if n_1 is the geometric mean of that of the materials on either side (e.g. n_0 = glass or air and n_2 = semiconductor):


$$n_1 = \sqrt{n_0 n_2}$$

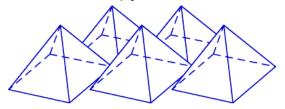
 \Rightarrow improved optical coupling

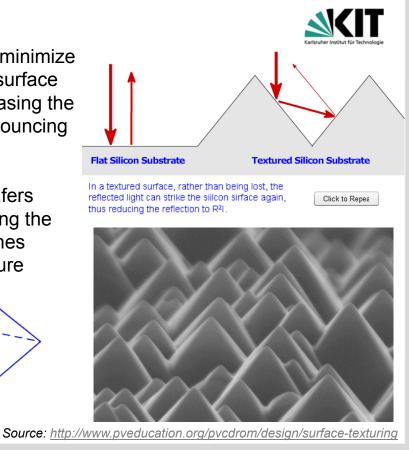
e.g. shown for n_1 = 2.29 and d_1 = 60nm (optimized for under glass)

Source: <u>http://www.pveducation.org/</u> pvcdrom/design/anti-reflection-coatings

N.B. extension to double-layer ARCs also possible $(n_2 > n_1)$

Four multicrystalline silicon (mc-Si) wafers covered with silicon nitride ARC


surroundings with refractive index of no

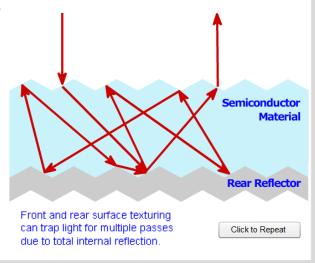

layer 1 with refractive index of n1 layer 2 with refractive index of n2 silicon wafer with refractive index of n3

Source: http://www.pveducation.org/pvcdrom/design/anti-reflection-coatings

Surface texturing can also minimize reflection \Rightarrow "roughening" surface reduces reflection by increasing the chances of reflected light bouncing back onto the surface

Crystalline silicon (c-Si) wafers are textured by etching along the faces of certain crystal planes \Rightarrow results in "pyramid" texture

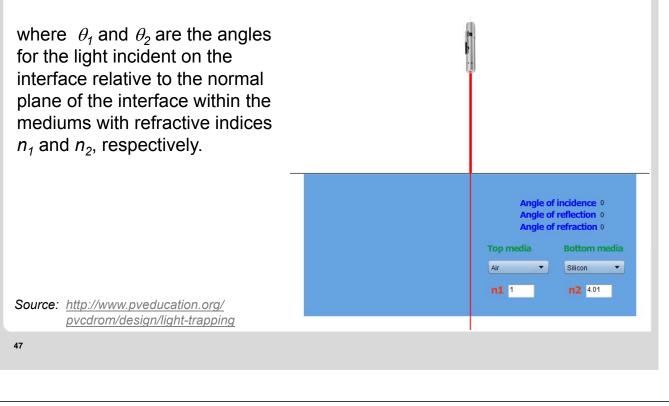
Optical Losses


Remember, that if the light is not absorbed within diffusion length L of junction \Rightarrow light-generated carriers are lost to recombination

Thus, a good solar cell structure will have "light trapping" \Rightarrow optical path length is several times the actual device thickness, e.g. solar cell with no light trapping features may have optical path length of one device

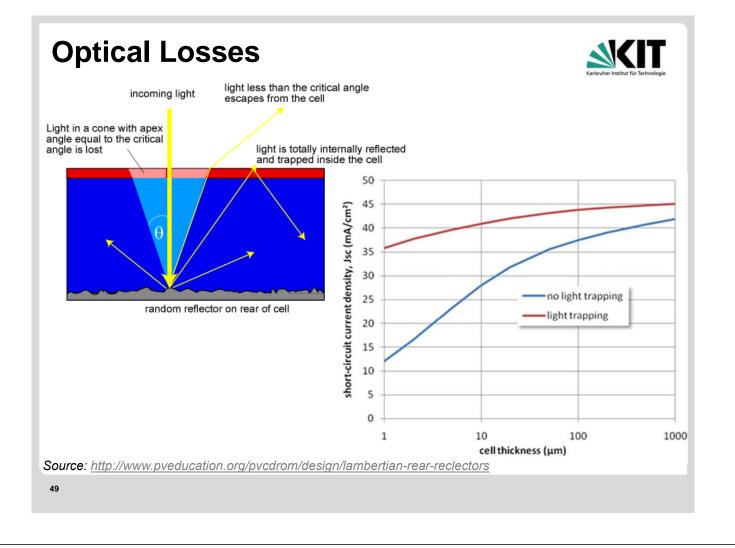
thickness, but good light trapping may result in an optical path length of 50 ⇒ light bounces back and forth within the cell many times

Achieved via changing angle that light enters the solar cell, e.g. pyramid texturing


Source: <u>http://www.pveducation.org/</u> pvcdrom/design/light-trapping

Angle at which light is refracted into the semiconductor material is given by Snell's Law:

 $n_1 \sin \theta_1 = n_2 \sin \theta_2$


Optical Losses

Lambertian back reflector \Rightarrow special type of rear reflector that randomises direction of reflected light (useful for thin-film solar cells).

Randomising the direction of light allows much of the reflected light to be totally internally reflected (TIR) \Rightarrow can occurs when light passes from high *n* to low *n* medium \Rightarrow the "critical angle" where this occurs found by setting θ_2 in Snell's law to 0

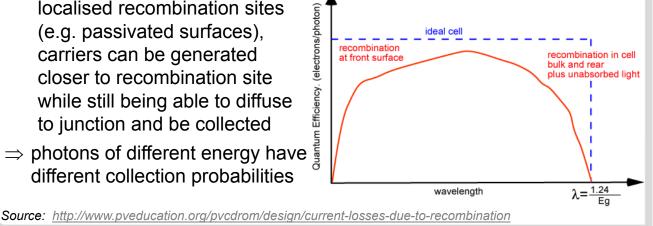
Light absorption can be dramatically increased in this way, since the pathlength of the incident light can be enhanced by a factor up to $4n^2 \Rightarrow$ optical path length of ~50 times the physical devices thickness possible

Recombination Losses

Recombination losses effect both the current collection (I_{sc}) as well as the forward bias injection current (and therefore V_{oc})

Recombination classified according to region of cell where it occurs:

- Main places for recombination are at surfaces (surface recombination) or in the bulk of the solar cell (bulk recombination)
- Recombination can also occur in the depletion region


Recombination Losses: Current

For *p*-*n* junction to collect all light-generated carriers \Rightarrow minimise both surface and bulk recombination. In Si solar cells, two conditions are:

- carrier must be generated within L of junction \Rightarrow can diffuse to 1. junction before recombining
- for localised sites of high recombination site (e.g. at unpassivated 2. surface, or grain boundaries in mc-Si) \Rightarrow carrier must be generated closer to the junction than to recombination site. For less severe

localised recombination sites (e.g. passivated surfaces), carriers can be generated closer to recombination site while still being able to diffuse to junction and be collected

 \Rightarrow photons of different energy have different collection probabilities

Recombination Losses: Voltage

 V_{oc} is voltage at which the forward bias diffusion current exactly equals I_{sc} . Forward bias diffusion current depends on amount of recombination in p-n junction \Rightarrow recombination increases the forward bias current

Thus, high recombination increases the forward bias diffusion current, which in turn reduces the V_{oc} .

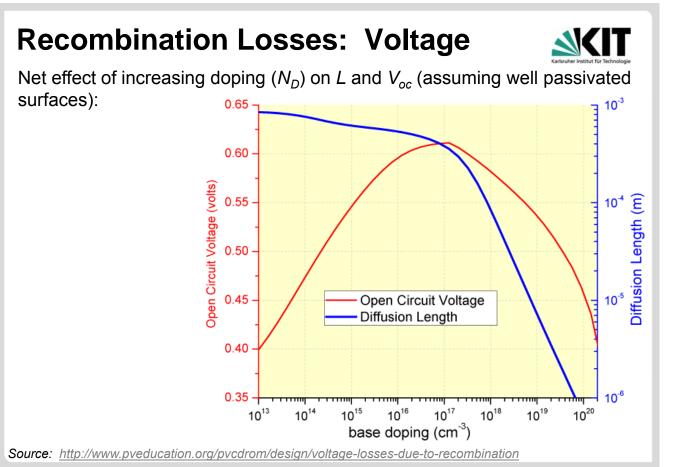
Material parameter which gives the recombination in forward bias is I_0 .

Recombination is controlled by number of minority carriers at junction edge, how fast they move away from junction and how quickly they recombine

Consequently, I_0 and hence V_{0c} are affected by three following parameters:

no. of minority carriers at junction edge. The no. of minority carriers 1. injected from the other side is simply the no. of minority carriers in equilibrium multiplied by an exponential factor (depends on V and T). Therefore, minimising the equilibrium minority carrier concentration reduces recombination. Minimizing the equilibrium carrier concentration is achieved by increasing the doping;

Source: http://www.pveducation.org/pvcdrom/design/current-losses-due-to-recombination

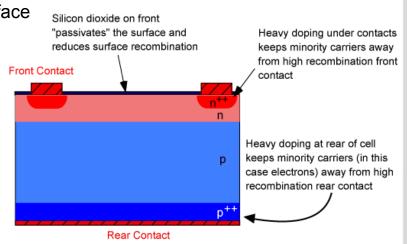

Recombination Losses: Voltage

2. Diffusion length – a low *L* means minority carriers disappear from junction edge quickly due to recombination \Rightarrow allowing more carriers to cross and increasing I_0 . Thus, to minimise recombination and achieve a high voltage, a **high diffusion length is required.**

L depends on types of material, the processing history of the wafer and the doping in the wafer. High doping reduces $L \Rightarrow$ trade-off between maintaining a high *L* (affects both the current and voltage) and achieving a high V_{oc}

A high recombination source close to the junction (e.g. front surface or a grain boundary) ⇒ allows carriers to move to this recombination site very quickly ⇒ dramatically increasing I₀. The impact of surface recombination is reduced by passivating the surfaces

Surface Recombination

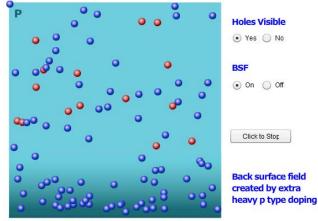


High recombination rates at top surface have particularly detrimental impact on I_{sc} since highest generation region of carriers occurs at top surface

Reducing high front surface recombination is typically accomplished by reducing the number of dangling silicon bonds at the top surface by using "passivating" layer, e.g. thermally grown silicon dioxide (SiO_2) or hydrogenated silicon nitride (a-SiN:H) layers to passivate the surface and

reduce defect states at interface

Does not work under an ohmic metal contact. Instead, recombination effect minimised by increasing doping \Rightarrow high doping severely degrades *L*, but no carrier generation under the contacts

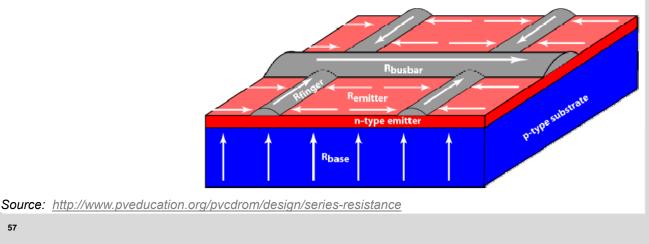

Source: <u>http://www.pveducation.org/pvcdrom/design/current-losses-due-to-recombination</u>

55

Surface Recombination

Similar effect employed at rear surface \Rightarrow "back surface field" (BSF) consists of a higher doped region at rear surface of solar cell. Interface between high- and low-doped region behaves like a *p*-*n* junction \Rightarrow forms electric field at interface \Rightarrow introduces a barrier to minority carrier flow to rear surface.

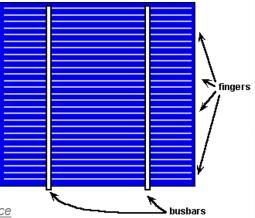
Thus, minority carrier concentration is maintained at higher levels in the bulk of the device \Rightarrow BSF has net effect of passivating rear surface

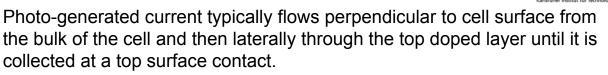

High Surface Recombination Velocity

Source: http://www.pveducation.org/pvcdrom/design/surface-recombination

Finally, to design a high-efficiency solar cell we need to minimise parasitic resistive losses. Very low shunt resistance is a processing defect rather than design parameter. However, series resistance, controlled by the top contact design and emitter resistance, needs to be carefully designed for each type and size of solar cell structure to achieve the best efficiency

 $R_{\rm s}$ of solar cell consists of several components, but the emitter and top grid (consisting of the finger and busbar resistance) dominate the overall series resistance \Rightarrow therefore most heavily optimised in solar cell design


Top Contact Design



Metallic top contacts necessary to collect current generated by solar cell

- "busbars" are connected directly to the external leads,
- "fingers" are finer areas of metallisation that collect current for delivery to the busbars

Key design trade-off in top contact design is balance between increased resistive losses associated with a widely spaced grid and the increased reflection caused by a high fraction of metal coverage of the top surface

Base Resistance:

The "bulk resistance" R_b to current flow through the bulk of the solar cell is defined as:

$$R_b = \frac{\rho l}{A} = \frac{\rho_b W}{A}$$

where:

l = length of conducting (resistive) path

- ρ_b = resistivity of the bulk cell material (0.5 5.0 Ω cm for typical silicon solar cell)
- A = cell area, and
- W = width of bulk region of cell (typically ~300 μ m thick)

59

Top Contact Design

For emitter layer, the resistivity and thickness are often unknown \Rightarrow difficult to calculate $R_{emitter}$ from the resistivity and thickness of this layer

Instead, we use a value known as the "sheet resistivity", which depends on both the resistivity and the thickness, that is easily readily measured for the top surface (typically *n*-type) layer. For a uniformly doped layer, the sheet resistivity ρ_{\Box} is defined as:

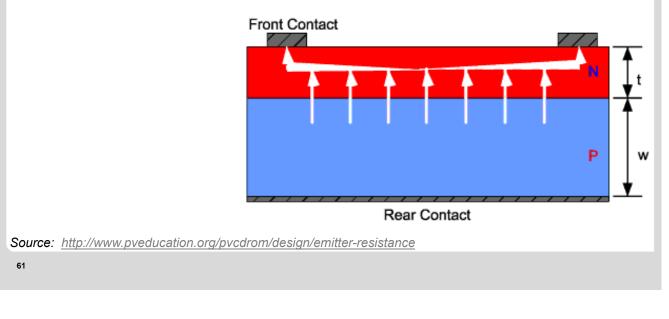
$$\rho_{\Box} = \frac{\rho}{t}$$

where

 ρ = resistivity of the emitter layer

t = the thickness of the layer

 $\rho_{\scriptscriptstyle \Box}$ is normally expressed as ohms/square or $\Omega/{\scriptscriptstyle \Box}$ and measured using a four-point probe.


For non-uniformly doped $\mathit{n}\text{-type}$ layers, $\rho_{\scriptscriptstyle \Box}$ becomes:

$$\rho_{\Box} = \frac{1}{\int_0^t \frac{1}{\rho(x)} dx}$$

Based on ρ_{\Box} , the power loss due to $R_{emitter}$ can be calculated as a function of finger spacing of the front contact.

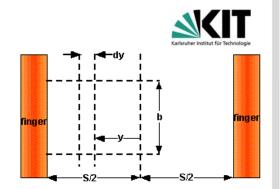
But, the distance that current flows in the emitter is not constant \Rightarrow current collected from the base close to the finger has only a short distance to flow to the finger, whereas if current enters the emitter between the fingers then the length of the resistive path is half the grid spacing

Top Contact Design

So, now defining the following dimensions, the incremental power loss in section *dy* is:

$$dP_{loss} = I^2 dR$$

The differential resistance *dR* is given by:


$$dR = \frac{\rho_{\Box}}{b} dy$$

where

 ρ_{\Box} = sheet resistivity in Ω/\Box

b = distance along the finger; and

y = distance between two grid fingers as shown above

The current also depends on y and l(y) is the lateral current flow, which is zero at the midpoint between grating lines and increases linearly to its maximum at the grating line, under uniform illumination. Given by:

$$I(y) = Jby$$

where

J =current density

The total power loss is therefore:

$$P_{loss} = \int I(y)^2 dR = \int_0^{S/2} \frac{J^2 b^2 y^2 \rho_{\Box} dy}{b} = \frac{J^2 b \rho_{\Box} S^3}{24}$$

where

S = spacing between the grid lines

Source: http://www.pveducation.org/pvcdrom/design/emitter-resistance

63

Next Week

Lecture 6: High-efficiency silicon solar cells

Dr. Jan Christoph Goldschmidt Head of Team "Novel Solar Cell Concepts" Fraunhofer Institute for Solar Energy Systems

Lecture 7: Fabrication of Silicon Solar Cells + Thin-Film PV (a-Si)

N.B. Likely exam date is 17th March

